Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(38): 26366-26374, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37671343

RESUMO

This work aims at synthesizing new cross-linked poly ionic liquids, CPILs, VIMDE-Cl and CPIL, VIMDE-TFA, utilizing polyethylene terephthalate waste as a precursor and applying them to magnetite nanoparticles surface modification, producing surface-modified magnetite nanoparticles, SMNPs, VDCL/MNPs, and VDTA/MNPs, respectively. The structures of VIMDE-Cl and VIMDE-TFA, VDCL/MNPs, and VDTA/MNPs, were verified using different techniques. The particle sizes of SMNPs, VDCL/MNPs, and VDTA/MNPs, were evaluated with a transmission electron microscope and dynamic light scattering. The compatibility of VDCL/MNPs and VDTA/MNPs with crude oil components and their response to an external magnet were also measured using contact angle measurements and a vibrating sample magnetometer. The data confirmed the formation of SMNPs, nanosized structure, compatibility with oil components, and response to an external magnet. For that, VDCL/MNPs and VDTA/MNPs were applied for oil spill recovery using different SMNP : crude oil weight ratios. The impact of contact time on SMNPs' performance was also evaluated. The data indicated increased performance with an increase in SMNPs ratio, reaching maximum values of 99% and 96% for VDCL/MNPs and VDTA/MNPs, respectively, at SMNPs : crude oil ratio of 1 : 1. According to the results, the optimal contact time was 6 min, resulting in 89% and 97% performance for VDCL/MNPs and VDTA/MNPs at 1 : 4 SMNPs : crude oil ratio.

2.
ACS Omega ; 8(24): 22245-22255, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360479

RESUMO

This work aims to synthesize and apply two novel amphiphilic ionic liquids (AILs) for the demulsification of water-in-crude oil (W/O) emulsions. To do that, 4-tetradecylaniline (TA) and 4-hexylamine (HA) were etherified using tetrethylene glycol (TEG) in the presence of bis(2- chloroethoxyethyl)ether (BE) as a cross-linker, yielding corresponding ethoxylated amines TTB and HTB. The obtained ethoxylated amines TTB and HTB were quaternized with acetic acid (AA), obtaining corresponding AILs TTB-AA and HTB-AA. The chemical structures, surface tension (ST), interfacial tension (IFT), and micelle size were investigated with various techniques. The performance of TTB-AA and HTB-AA to demulsify W/O emulsions was investigated using different influencing factors, including the demulsifier concentration, water content, salinity, and pH. Additionally, the obtained results were compared with a commercial demulsifier. The results indicated that the demulsification performance (DP) increased as the demulsifier concentration increased and the water content decreased; however, increased salinity slightly improved the DP. The data also showed that the highest DPs were achieved at a pH of 7, which suggested a change in the chemical structure of these AILs at a lower and higher pH due to their ionic structure. Furthermore, TTB-AA demonstrated higher DP than HTB-AA, which could be explained by its higher ability to reduce IFT due to a longer alkyl chain than that of HTB-AA. Furthermore, TTB-AA and HTB-AA showed significant DP compared to the commercial demulsifier especially with W/O emulsions at low water content.

3.
ACS Omega ; 8(6): 6030-6039, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816702

RESUMO

New non-ionic surfactants based on alkylamine and poly(ethylene glycol) dimethacrylate were synthesized by one-step Aza-Michael addition reaction. The surfactants' chemical compositions, surface and interfacial activities, micellization, and zeta potential were characterized. Their surface and interfacial activities recommended the application as demulsifiers for water in Arabian heavy oil emulsions (w/o). The demulsification of this type of emulsion has attracted researchers' attention because of its high stability with water droplets in the microscale. The outcome of using the prepared surfactants showed high performance as emulsion breakers, as the demulsification efficiency reached 100% for w/o emulsions with different water to oil ratios (50:50, 30:70, and 10:90).

4.
J Environ Manage ; 316: 115194, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537267

RESUMO

The oil spill represents one of the most important pollution sources for marine environments, that occurs due to tanker collisions, ship accidents, and platforms. Several techniques are used for treating oil spill disasters including chemical, physical, and biochemical. The use of chemicals, magnetite nanomaterials (MNMs) in particular, is one of the most applied techniques used for oil spill remediation due to their low cost, fast remediation, and reusability. This work aims to synthesize and use new ionic liquids (ILs) for the modification of MNMs surfaces to enhance their performance for crude oil uptake. For that, octadecylamine (OA) was reacted with epichlorohydrin (EH), followed by reaction with either diethylenetriamine (DT), or tetraethylenepentamine (TP) to obtain corresponding amines, OADT, and OATP, respectively. The produced amines were quaternized using acetic acid (AA) forming corresponding ILs, OADT-IL, and OATP-IL. The obtained ILs, OADT-IL, and OATP-IL were applied for modification of magnetite nanomaterials (MNMs) surface to obtain the surface-modified MNMs, DT-MNMs, and TP-MNMs, respectively. The surface-modified MNMs were characterized using different techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and contact angle. The efficacy of DT-MNMs, and TP-MNMs for heavy crude oil uptake (EMU) was evaluated. Further, the factors affecting on the crude oil uptake including MNMs: heavy crude oil ratio, and contact time were also evaluated. The data exhibited that, the EMU relatively declined as the ratio of DT-MNMs, and TP-MNMs decreased. Even at low MNMs:crude oil ratio (1:50), DT-MNMs, and TP-MNMs displayed EMU 87%, and 90%, respectively, which means 1 g of either DT-MNMs, or TP-MNMs can uptake 45 g, or 43.5 g, respectively. These values are high as compared with other studies that reported the use of MNMs for oil spill cleanup. Furthermore, the data indicated that the EMU increased as the contact time increased, and reached maximum EMU of 98% for both MNMs samples after 10 min.


Assuntos
Líquidos Iônicos , Nanoestruturas , Transportadores de Ânions Orgânicos , Poluição por Petróleo , Petróleo , Aminas , Óxido Ferroso-Férrico , Poluição por Petróleo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...